

Page 1 of 5

NDS v2.3. Release notes

Table of Contents
1 INTERFACE CHANGES .. 2

1.1 NDS Library Renamed .. 2
1.2 Device State Machine Changes .. 2
1.3 ChannelGroup and Channel State Machine Changes .. 2

1.3.1 Auto Start ... 4

2 NEW FEATURES .. 5

2.1 NDS Tasks .. 5

Page 2 of 5

1 INTERFACE CHANGES

1.1 NDS Library Renamed

The NDS library was renamed from libndsCPP.so to libnds.so.

All links to the NDs library must be fixed.

1.2 Device State Machine Changes

Now the device goes to the INIT state with the ON message. If required, immediately switch
the device to the ON state (fast init), then the following code should be used:

ExDevice::ExDevice(const std::string& name)
{
…
 enableFastInit();
…
}

This call will register the onEnter handler for the INIT state, which will request the ON state
immediately after entering the INIT state.

1.3 ChannelGroup and Channel State Machine Changes
NDS v.2.3 changes the state machine for ChannelsGroup and Channel.

The state machine which existed in NDS v.2.2.5 is depicted in Figure 1.

Page 3 of 5

Figure 1 NDS 2.2.5 ChannelGroup’s and Channel's state machine

NDS v.2.3 has a reworked state machine. The states READY and ENABLED are deprecated.
READY and PROCESSING represented 2 sub-states of a single state: PROCESSING. It
makes handling of these 2 states complicated and from a development perspective could cause
a number of mistakes. The new state machine will only have the PROCESSING state. The
ENABLED state plays the role of a flag indicating whether an object is enabled or not. To
make the model consistent, if a parent object goes into the DISABLED state all children
objects (in relationship ChannelGroup - Channel) should also go into the OFF state. After that
it is impossible to restore configuration of child objects. The new model only has a
DISABLED state and introduces the PV (-ENBL) which indicates whether the object should be
enabled or not on initialization. Here “enabled” means that the object is configured and ready
to be used. Each object could be enabled independently from its parent. It means that a disabled
ChannelGroup could have enabled Channels. This solution simplifies state handling and allows
preservation of an object’s state between device restarts. The new state machine is depicted in
Figure 2.

 stm Channel

Disabled

Enabled

Defunct

Initial

Unknown

Processing

Error

Final

Object instantiated but
not initial ized.

Channel is disabled.

Channel enabled.
Now it could be
configured.

IOCInitializationState to handle al l
steps of IOC
initial ization.

Ready

Channel configured and ready to process.
Configuration can't be changed.

Defunct state is
available from any
state.

Error state is available
from any state

Resetting

stop()

defunct()

ready()

erro()disable() enable()

error()

ready() disable()

stop()

start()

Page 4 of 5

Figure 2 NDS v.2.3 ChannelGroup's and Channel's state machine

The ERROR and FAULT states are accessible from any other state (is not shown in Figure 2).

The transition from the RESETTING state is managed by the developer by use of special
requests (is not shown in Figure 2).

NDS v.2.3 will support the obsolete states until the next version. All functions which will be
removed in future versions are marked as “deprecated”. Please ensure that you don’t get
warnings during compilation.

1.3.1 Auto Start
Introduction of the ENABLED/DISABLED flag allows introduction of an auto start procedure.
It means that an object which has the –ENBL PV in state 1 (Enabled) will be automatically
switched to the PROCESSING state immediately after IOC initialization is complete.
It provides the ability to configure the initial device state from configuration tools, like SDD.

 stm Channel2.3

State managed by user

Disabled Processing

Fault

ErrorResetting

Unknown

IOCInitilization

Initial

Final

Object is
instantiated.

Object is
registered and IOC
initialization is in
progress. error()

fault()

start()
[Configured]

reset()

reset()

Page 5 of 5

2 NEW FEATURES

2.1 NDS Tasks
NDS introduces tasks to serve threading needs. The new tasks are:

■ ndsThreadTask
■ ndsPeriodicTask

■ ndsPollingTask
From previous versions the following task also exists:

■ nds:Timer.
All tasks have a common interface and each new task is registered within nds::TaskManager.

■ ThreadTask is a simple thread wrapper which provides an easy way to register callback
to be run in a separate thread.

■ PeriodicTask allows running of callback with requested period.
■ PollingTask provides a core for file polling. It uses epoll functions.

■ Timer is a wrapper over epicsTimer to provide a common task interface.
Users can manage tasks through the IOC console with the following functions:

 ndsListTasks
 ndsStartTask
 ndsCancelTask

For details see the NDS developer’s manual. For examples see EPICS application templates
provided by NDS.

